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Abstract—As parallel computing trends towards the exas-
cale, scientific data produced by high-fidelity simulations are
growing increasingly massive. For instance, a simulation on a
three-dimensional spatial grid with 512 points per dimension
that tracks 64 variables per grid point for 128 time steps
yields 8 TB of data. By viewing the data as a dense five-
way tensor, we can compute a Tucker decomposition to
find inherent low-dimensional multilinear structure, achieving
compression ratios of up to 10000 on real-world data sets
with negligible loss in accuracy. So that we can operate
on such massive data, we present the first-ever distributed-
memory parallel implementation for the Tucker decomposition,
whose key computations correspond to parallel linear algebra
operations, albeit with nonstandard data layouts. Our approach
specifies a data distribution for tensors that avoids any tensor
data redistribution, either locally or in parallel. We provide
accompanying analysis of the computation and communication
costs of the algorithms. To demonstrate the compression and
accuracy of the method, we apply our approach to real-world
data sets from combustion science simulations. We also provide
detailed performance results, including parallel performance in
both weak and strong scaling experiments.

Keywords-Tucker tensor decomposition; compression

I. INTRODUCTION

Today’s high-performance parallel computers enable
large-scale, high-fidelity simulations of natural phenomena
across scientific domains. As the speed and quality of sim-
ulations increases, the amount of data produced is growing
at a rate that is creating bottlenecks in the scientific process.
A posteriori analysis of the data requires dedicated storage
devices and parallel clusters even for simple computations.
One of the primary goals of this work is to supply a com-
pression technique for large-scale simulation data, enabling
much more efficient data storage, transfer, and analysis and
facilitating bigger and better science.

Scientific simulation data is naturally multidimensional,
tracking different variables in space and time; see Fig. 1a.
As a prototypical example, we focus on simulation data
from combustion science research. In this domain, simulated
phenomena tend to be bursty, with important activity occur-
ring in subsets of the spatial grid, small points in time, or
involving a subset of the quantities of interest, like chemical
species or fluid velocities. Thus, the data typically have low-
dimensional multilinear structure allowing for compression.
We consider compression based on the Tucker decomposi-
tion for higher-order tensors, which is analogous to principal
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(a) Natural five-way multiway
structure of scientific data.
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(b) Compression vs. fidelity for
512 GB simulation dataset.

Figure 1.

component analysis (PCA) or the truncated singular value
decomposition (T-SVD) of two-way data. We describe the
Tucker decomposition in more detail in Sec. II.

Our main contribution in this work is a distributed-
memory parallel algorithm and implementation for com-
puting the Tucker decomposition of general dense tensors.
Compression rates for a 512 GB scientific simulation dataset
using our method are shown in Fig. 1b. To the best of
our knowledge, ours is the first distributed-memory imple-
mentation of a parallel algorithm for computing a Tucker
decomposition. Related work for other decompositions and
algorithmic kernels are discussed in Sec. III.

The algorithm works for dense tensors of any order (i.e.,
number of dimensions) and size, given adequate memory,
e.g., three times the size of the data. The algorithm is effi-
cient because it casts local computations in terms of BLAS3
routines to exploit optimized, architecture-specific kernels;
the data distributions and corresponding parallel computa-
tions are designed to reduce interprocessor communication.
We present the data distribution, parallel kernels, and overall
algorithm in Secs. IV to VI, along with accompanying
analysis of the computation and communication costs and
memory requirements.

Using real-world simulation data from combustion sci-
ence, we demonstrate the effectiveness of Tucker for com-
pression in Sec. VII. In particular, we show that these data
sets have inherent low-dimensional multilinear structure that
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can be exploited for compression. We show that the Tucker
tensor decomposition can reduce the data by 50–99.98%
with normalized root mean squared (RMS) errors less than
10−6, and by 99.9% and more with normalized RMS
errors less than 10−2. Such high compression rates allow
terabytes of data to be reduced to gigabytes or megabytes,
enabling easy data transfer and sharing. Additionally, we can
reconstruct small subsets of the data upon request, enabling
efficient analysis on even a single laptop.

The implementation is scalable. Results in Sec. VIII show
that the algorithm performs well for large and small data sets
using up to 30,000 cores. It achieves near peak performance,
as high as 83%, on a single node consisting of 24 cores and
up to 17% of peak on over 1000 nodes. At large scale, we
are able to compress a 15 TB data set to 1.5 GB in about
a minute and a 9 GB data set to 33 MB in under a second,
with aggregate performance up to 100 TFLOPS.

II. TUCKER TENSOR DECOMPOSITION

A. Tensor Notation and Operations

Let X be a real-valued tensor of size I1 × I2 × · · · × IN .
We define

I =

N∏
n=1

In and În = I/In for n ∈ { 1, . . . , N }

to be the total number of data elements and that number
divided by the length of mode n, respectively. The mode-
n unfolding rearranges the elements of X to form an
In × În matrix and is denoted by X(n). Tensor element
(i1, i2, . . . , iN ) maps to matrix element (in, j) where j =
1 +

∑n−1
k=1(ik − 1)Îk +

∑N
k=n+1(ik − 1)(Îk/In). The n-

rank of the tensor X is the column rank of X(n), denoted
rankn(X). The norm of a tensor is the square root of the
sum of the squares of the entries, i.e., ‖X‖ = ‖X(1)‖F .

The mode-n product of the tensor X with a real-valued
matrix V of size In × J is denoted X×n V and is of size
I1×· · ·×In−1×J×In+1×· · ·×IN . This can be expressed
in terms of unfolded tensors, i.e.,

Y = X×n V ⇔ Y(n) = VX(n).

This is also known as the tensor-times-matrix (TTM) prod-
uct. The order of multiplications is irrelevant, i.e., X ×m

W×nV = X×nV×mW for m 6= n. If we are multiplying
by a sequence of matrices, then we may use the shorthand
Y = X × {V(n) }, to indicate that we should multiply X

by each matrix in the set along the corresponding mode.
Unless otherwise indicated, we assume {V(n) } is indexed
from n = 1, . . . , N .

B. Tucker Algorithm and Key Kernels

The Tucker decomposition [20] approximates a data ten-
sor X as

X ≈ G×1 U(1) ×2 U(2) · · · ×N U(N) = G× {U(n) } ,

where G is the core tensor of size R1×R2× · · ·×RN and
U(n) is a factor matrix of size In × Rn for n = 1, . . . , N .
We say R1 × R2 × · · · × RN is the reduced dimension
or, equivalently, the rank of the reduced representation. The
decomposition is illustrated for N = 3 in Fig. 2.

X

≈
U(1)

G
U(2)

U(3)

Figure 2. Tucker decomposition for N = 3.

Ideally, the data tensor has low-rank structure meaning
that we can choose Rn ≈ rankn(X) � In so that most of
the variance of the data is preserved. Given factor matrices
{U(n) }, it is well known that the optimal core is given by
G = X× {U(n) } [13].

The storage is dominated by the core of size R =∏N
n=1Rn. There is additional

∑N
n=1 InRn storage for the

factor matrices, but this is generally negligible compared to
the storage of the core.

The Tucker1 method, better known as truncated higher-
order singular value decomposition (T-HOSVD) [6], [20], is
a particular case of Tucker where U(n) is set to be the Rn

leading left singular vectors of X(n). The T-HOSVD is not
optimal, but it is often a good starting point for the iterative
procedure described below. We use a variation known as
the sequentially-truncated HOSVD (ST-HOSVD) [21] for
initialization. The first factor matrix is initialized as for the
T-HOSVD, i.e., the R1 leading left singular values of X(1).
The nth factor matrix is initialized as the Rn leading left
singular vectors of Y(n) where Y = X ×1 U(1)T · · · ×n−1
U(n−1)T. The size of Y(n) is In×(

∏
m<nRm)(

∏
m>n Im).

One advantage of this method is that the Y tensors are
smaller than X for n > 1. The ST-HOSVD is presented
in Alg. 1. Here, we pick the Rn values according to a user-
specified relative error threshold [21]. Although we do not
make it explicit in the algorithm, the modes can be processed
in any arbitrary order; see Sec. VIII-C for the impact of
different orderings.

Algorithm 1 Sequentially-Truncated HOSVD (ST-HOSVD)
1: procedure ST-HOSVD(X, ε)
2: Y← X
3: for n = 1, . . . , N do
4: S← Y(n)Y

T
(n)

5: Rn ← min R such that
∑

r>R λr(S) ≤ ε2‖X‖2/N
6: U(n) ← leading Rn eigenvectors of S
7: Y← Y×n U(n)T

8: end for
9: G← Y

10: return (G, {U(n) })
11: end procedure



The higher-order orthogonal iteration (HOOI) [7], [14]
is an alternating optimization method that further improves
the approximation. The procedure cycles through the modes
of the tensor, calculating the leading left singular vectors of
Y(n) where Y = X×{U(m)T }m 6=n , i.e., X is multiplied in
every mode except n by the corresponding factor matrix. The
size of Y(n) is In×R̂n where R̂n =

∏
m 6=nRm. The HOOI

method is presented in Alg. 2. HOOI is an iterative algorithm
that monotonically improves the error but has no guarantees
on converging to a global minimum; we iterate until the
approximation error is small enough, the improvement in
approximation falls below a given threshold, or a maximum
number of iterations are reached. We track the quantity
(‖X‖2 − ‖G‖2) in line 10 because it is equivalent to the
fit of the model, i.e., ‖X− G× {U(n) } ‖2 [13].

Algorithm 2 Higher-order Orthogonal Iteration (HOOI)
1: procedure HOOI(X, ε)
2: (G, {U(n) }) = ST-HOSVD(X, ε)
3: repeat
4: for n = 1, . . . , N do
5: Y← X×{U(m)T }m 6=n

6: S← Y(n)Y
T
(n)

7: U(n) ← leading Rn eigenvectors of S
8: end for
9: G← Y×N U(N)T

10: until the quantity (‖X‖2 − ‖G‖2) ceases to decrease
11: return (G, {U(n) })
12: end procedure

For both ST-HOSVD and HOOI, we compute the leading
left singular vectors of Y by forming its In×In Gram matrix
S = Y(n)Y

T
(n) and then computing its eigenvectors. Alter-

natively, we could work directly with Y(n) and compute
its singular vectors (see Sec. IX for more discussion). Our
decision is motivated by the application-based assumption
that ε is larger than the square root of machine precision
and that In is relatively small, i.e., In ≤ 2000 for all n.

We focus on parallelizing the ST-HOSVD and HOOI
methods whose inputs are X and the desired accuracy. The
three key operations in Alg. 1 and Alg. 2 are

1) the (sequence of) TTM operations to calculate Y,
2) the Gram matrix computations to calculate S, and
3) the eigenvector calculations to calculate U(n).

The difference between the two algorithms is that the tensors
Y are of different sizes. In HOOI, the core matrix is
computed in line 9, exploiting the fact that the current Y

tensor already has the first N − 1 products calculated.

C. Reconstruction

Given a core G and factor matrices {U(n) }, we compute
the approximate reconstruction of X, denoted X̃, by calling
a sequence of TTM operations, i.e.,

X ≈ X̃ = G× {U(n) } . (1)

Note that we can efficiently compute subtensors of X̃

(without forming the entire tensor) by modifying eq. (1)
appropriately, using subsets of rows of the factor matrices.

III. RELATED WORK

The Tucker decomposition is a powerful tool for compres-
sion of scientific data, as previously shown for hyperspectral
images [10] and volume rendering [1]. Our work parallelizes
the method and demonstrates its utility on large-scale data
sets.

To the best of our knowledge, ours is the first distributed
memory implementation of the Tucker tensor decomposi-
tion. Zhou, Cichocki, and Xie [23] propose a randomized
method for computing the Tucker decomposition of large
tensors, but still assume all the data fits on a single machine.
Li et al. [15] consider a shared-memory parallel implementa-
tion of dense TTM, which may be used directly and adapted
for the local computations in our method.

Several groups have parallelized the canonical polyadic
(CP) tensor decomposition. The primary kernels are dis-
tinct from this work, but we mention a few similarities.
Karlsson, Kressner, and Uschmajew [11] have a parallel CP
decomposition of multidimensional data with missing entries
using either cyclic coordinate descent or alternating least
squares; they use a similar data distribution strategy to our
in terms of the data tensor and factor matrices. Kaya and
Uçar [12] focus on CP of sparse tensors using a hypergraph
partitioning scheme. Kang et al. [9] provide a MapReduce
implementation of CP for sparse data. Smith et al. [18]
parallelize a particular key kernel for CP on sparse data for
three-mode tensors. Phan and Cichocki [16] break up the
problem by computing CP decompositions of subtensors (in
parallel) and then stitching the results together for a global
CP decomposition.

Another tensor decomposition known as the tensor train
(TT) decomposition has recently been parallelized by Etter
[8] by focusing on the recursive branching nature of the
method. There has also been considerable work on parallel
tensor contraction; see, e.g., [17] and references therein.

IV. PARALLEL DATA DISTRIBUTIONS

For N -way tensors, we assume a logical N -way processor
grid. Let P1 × P2 × · · · × PN be the size of the processor
grid. For ease of presentation, we assume Pn evenly divides
In and Rn, but our implementation does not require this.
Let P =

∏
Pn be the total number of processors and P̂n =

P/Pn be the number of processors in all modes but n. From
the point of view of a particular processor, we denote its
local portion of a distributed object with an overhead bar.

A. Tensor Distribution

Let J1 × J2 × · · · × JN be the size of a generic tensor
Y where, for our purposes, Jn ∈ { In, Rn } for all n. Let
J =

∏
Jn be the total size and Ĵn = J/Jn be the size in



← J2 →

←
J
1
→

←
J 3
→

(a) Tensor on 4×3×2
processor grid.

n = 1 n = 2

n = 3 n = 4

(b) Local data layout for 2×2×2×2 tensor
unfolded in different modes.
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all modes but n. We impose a Cartesian parallel distribution
of the tensor across processors, which we refer to as a block
distribution. Each processor owns a distinct subtensor of size
J1/P1 × · · · × JN/PN , with J/P entries. A similar tensor
distribution is used in [23]. See Fig. 3a for an illustration of
a 3D tensor block distributed over a 4×3×2 processor grid.
The local tensor, Ȳ, is stored so that its mode-1 unfolding
is in column-major order.

B. Matrix Distribution

Factor matrices are also distributed across processors.
Given a mode n, let V be a generic matrix of size K × J
where (K,J) = (Rn, In) for decomposition or (K,J) =
(In, Rn) for reconstruction. We treat our processor grid
as two-dimensional of size Pn × P̂n. We divide V into
Pn column blocks so that V =

[
V1 V2 · · · VPn

]
.

We distribute the matrix redundantly on every processor
column, i.e., P̂n times. Since the these matrices are relatively
small, the redundant storage is negligible. More precisely,
if Rn < În/P̂n, then the local storage of a factor matrix
does not exceed the size of the local tensor. Processor
(p1, p2, . . . , pN ) owns block column Vpn of size K×J/Pn.
We assume the local matrices are stored in row-major order.

C. Unfolded Tensor Distribution

Unfolding a tensor is a purely logical process and involves
no data redistribution. Given a block distribution of a tensor,
the unfolded tensor (a matrix) is also block distributed across
a 2D processor grid. In other words, a tensor unfolded in
mode n has dimension Jn×Ĵn and is distributed over a Pn×
P̂n processor grid. Note that if Pn = 1, then the unfolded
matrix has a 1D column distribution across P processors.

The local portion of the unfolded tensor is equivalent to
unfolding the local tensor. Again, this unfolding is logical;
no local data distribution is required. The local unfolded
tensor, Ȳ(n), is stored in

∏
m>n(Im/Pm) block columns,

with each block column of size (In/Pn)×
∏

m<n(Im/Pm)
stored in row-major order. The local data layout is illustrated
in Fig. 3b. The dots show the elements of the unfolded tensor
arranged as a matrix connected by a green line in the order
that they are stored in memory. When n = 1, Ȳ(1) is in
column-major order; and when n = 4, Ȳ(4) is in row-major

order. For the interior modes, the data is a series of row-
major subblocks. For n = 2, there are 4 subblocks of size
2×2. For n = 3, there are 2 subblocks of size 2×4. In local
computations, each subblock can be processed separately
using BLAS subroutines.

V. PARALLEL KERNELS AND ANALYSIS

A. Parallel Cost Model and Collectives

To analyze our algorithms, we use the α-β-γ model of
distributed-memory parallel computation, assuming the time
to send a message of size W words between any two
processors is α+Wβ, where α is the latency cost and β is
the per-word transfer cost, and γ is the time for one floating
point operation (flop). For more discussion of the model and
descriptions of efficient collectives, see [4], [19]. Let W be
the data size and P be the number of processors, then the
costs for relevant operations are summarized in Tab. I. For
simplicity of presentation, we will ignore the flop cost of
reduce and all-reduce, as they are typically dominated by
the bandwidth costs.

Table I
COMMUNICATION COSTS IN α-β-γ MODEL.

Send/Receive α+ βW

All-gather α logP + β P−1
P

W

Reduce α logP + (β + γ)P−1
P

W

All-reduce 2α logP + (2β + γ)P−1
P

W

B. Parallel TTM Computation

We consider the parallel algorithm for the TTM operation,

Z = Y×n V,

for a generic tensor Y of size J1 × J2 × · · · × JN and a
matrix V of size Jn ×K. The result is a tensor Z of size
J1 × · · · × Jn−1 ×K × Jn+1 × · · · × JN . We can rewrite
the operation in matricized form as

Z(n) = VY(n).

The matrices are distributed as described in Sec. IV, and
our parallel algorithm is presented in Alg. 3. We divide V̄,
the local portion of V, of size K × Jn/Pn, into Pn block
rows, i.e., V̄

[`] denotes the `th block row of size K/Pn ×
Jn/Pn. We compute the local product one block row at a
time, i.e., locally compute

W = Ȳ×n V̄
[`] or W(n) = V̄

[`]
Ȳ(n),

and sum the results across all processors in the same
column to yield the result for the `th member. The local
computation is also a mode-n TTM, which we implement
using dgemm within BLAS while respecting the local layout
of the unfolded tensor as described in Sec. IV-C.

The blocking ensures that the size of the intermediate
products, which is K/Pn × Ĵn/P̂n, is never larger than the
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Figure 4. Parallel distributions of matrices involved in TTM operation Z = Y ×2 V on a 2 × 3 × 2 processor grid. The data owned by 3 of the 12
processors is color coded. The computation requires P2 = 3 iterations, each using one block row of V and producing one (labeled) block of the output.

size of the local result tensor. We note that if K < Jn/Pn,
then we can avoid the blocking strategy, performing a single
local matrix multiplication followed by a single reduce-
scatter, without the temporary memory exceeding the size
of the local input tensor. This optimization reduces latency
cost but does not affect computation or bandwidth costs;
our analysis will assume the blocking strategy but our
implementation exploits the non-blocked approach when
possible.

Algorithm 3 Parallel TTM
1: procedure TTM(Y,V,n)
2: myProcID← (p1, p2, . . . , pN )
3: myProcCol← (p1, . . . , pn−1, ∗, pn+1, . . . , pN )
4: for ` = 1, . . . , Pn do
5: W← Ȳ×n V̄

[`]

6: Z̄← REDUCE(W,myProcCol, `) . Root is pn=`
7: end for
8: return Z
9: end procedure

Fig. 4 illustrates the computation on a 2×3×2 processor
grid for n = 2. We implicitly treat the processor grid as
Pn× P̂n = 3× 4 and consider Y(n) to be block distributed
as described in Sec. IV-C. We color code the block column
of Y(n) owned by the first column in the processor grid;
these three processors work together to compute the first
block column of the result. Note that V is redundantly stored
across every processor column as described in Sec. IV-B.
The result tensor Z is partitioned in the same way as
the input tensor Y. Note that the blocks of the result are
calculated one at a time, and numbered in the figure in the
order that they are computed.

The cost and memory of the parallel TTM (Alg. 3) is

CTTM = 2γ
JK

P︸ ︷︷ ︸
Pn× line 5

+αPn logPn + β(Pn − 1)
ĴnK

P︸ ︷︷ ︸
Pn× line 6

, and

MTTM = J/P︸︷︷︸
Ȳ

+ JnK/Pn︸ ︷︷ ︸
V̄

+ ĴnK/P︸ ︷︷ ︸
Z̄

+ ĴnK/P︸ ︷︷ ︸
W

.

The storage for W is temporary. If Pn = 1, then no parallel
communication is required.

Ĵn/P̂n

Jn
Pn

Y(n)

•

YT
(n)

=

+
+
+

+
+
+

+
+
+

Jn/Pn

Jn
Pn

S

Figure 5. Parallel distribution of matrices involved in Gram operation
S = Y(2)Y

T
(2) on a 2 × 3 × 2 processor grid. The data owned by 3 of

the 24 processors is color coded. Each processor column computes local
matrix-vector products and the results are summed across each block row.

C. Parallel Gram Computation

Given mode n, we compute the Gram matrix S =
Y(n)Y

T
(n) where Y is a tensor of size J1 × · · · × JN . Here,

we know Jn = In, but we ignore that fact in this discussion.
The unfolded tensor Y(n) is block distributed on the Pn×P̂n

processor grid per Sec. IV-C. The result S, of size Jn×Jn,
will be distributed with respect to mode n as described in
Sec. IV-B. We ignore the fact that S is symmetric, storing
both upper and lower triangles explicitly.

The data distribution for Gram is illustrated in Fig. 5,
and the method is shown in Alg. 4. Each processor column
owns a block column of Y(n) and computes an intermediate
matrix V of dimension Jn × Jn/Pn. The matrix V is
computed in row blocks of dimension Jn/Pn × Jn/Pn,
where each row block is the product of an unfolding of
the local tensor with the unfolding of another processor’s
local tensor. The computation at line 5 is a local Gram
computation that we perform using dsyrk within BLAS,
though for interior modes it requires multiple subroutine
calls to respect the local layout (as in the case of TTM). The
computation at line 11 is a nonsymmetric analogue that we
perform using dgemm. The V matrices are then summed
across each processor row (P̂n processors), using an all-
reduce collective, so that the result (a block column of S)
is replicated across the processor row. Note that if Pn = 1,
then the computation fully exploits symmetry, and the only
communication is the all-reduce across P processors.



Algorithm 4 Parallel Gram
1: procedure GRAM(Y,n)
2: myProcID← (p1, p2, . . . , pN )
3: myProcCol← (p1, . . . , pn−1, ∗, pn+1, . . . , pN )
4: myProcRow← (∗, . . . , ∗, pk, ∗, . . . , ∗)
5: V[pn] ← Ȳ(n)Ȳ

T
(n)

6: for i = 1 to Pn − 1 do
7: j ← (pn − i) mod Pn

8: k ← (pn + i) mod Pn

9: Send Ȳ to process (p1, . . . , pn−1, j, . . . , pN )
10: Receive W from process (p1, . . . , pn−1, k, . . . , pN )
11: V[k] ← Ȳ(n)W

T
(n)

12: end for
13: S̄ = All-Reduce(V,myProcRow)
14: return S̄
15: end procedure

The cost of parallel Gram (Alg. 4) is

CGRAM = γ2JnJ/P︸ ︷︷ ︸
line 5 +(Pn−1)× line 11

+ 2(Pn − 1) (α+ βJ/P )︸ ︷︷ ︸
(Pn−1)×lines 9 and 10

+ 2α log P̂n + 2β(P̂n − 1)J2
n/P︸ ︷︷ ︸

line 13

, and

MGRAM = J/P︸︷︷︸
Ȳ

+ J/P︸︷︷︸
W

+ J2
n/Pn︸ ︷︷ ︸
V

+ J2
n/Pn︸ ︷︷ ︸

S̄

.

The storage for W and V is temporary. Note that we report
costs of our algorithm; up to a factor of two could be saved
by exploiting symmetry of S.

D. Parallel Eigenvectors Computation

Alg. 5 presents our method for computing the leading
eigenvectors of the Gram matrix. After the Gram computa-
tion, the matrix S of size In × In is stored redundantly on
every processor column in the Pn × P̂n processor grid as
described in Sec. IV-B. We enforce the same distribution of
the transpose of the output In×Rn eigenvector matrix U(n),
which implies a block row distribution of U(n). Because we
assume In is relatively small, e.g., In ≤ 2000, our approach
is essentially a sequential algorithm. We perform an all-
gather across the processor fiber so that every processor
owns the entire matrix S. Every processor performs the local
eigenvector computation redundantly using dsyevx within
LAPACK and then extracts the appropriate subset of its local
result to obtain the desired final distribution. The algorithm
is presented in Alg. 5. While we assume Rn is an input to
the algorithm, we can also choose Rn “on the fly” based on
the desired error threshold for similar cost.

The cost and memory of the eigenvector computation
(Alg. 5) is

CEIG =α logPn + β
Pn − 1

Pn
In︸ ︷︷ ︸

line 4

+ γ
10

3
I3n︸ ︷︷ ︸

line 5

, and

MEIG = I2n/Pn︸ ︷︷ ︸
S̄

+ I2n︸︷︷︸
S

+ InRn︸ ︷︷ ︸
U(n)

+ InRn/Pn︸ ︷︷ ︸
Ū(n)

.

Algorithm 5 Parallel Eigenvectors
1: procedure EIGENVECTORS(S̄, Rn, n)
2: myProcID = (p1, p2, . . . , pN )
3: myProcCol← (p1, . . . , pn−1, ∗, pn+1, . . . , pN )
4: S = ALL-GATHER(S̄,myProcCol)
5: U(n) = LOCAL-EIGENVECTORS(S, Rn)

6: Ū
(n)

= ROW-SUBSET(U(n), Pn, pn) . Extract pn-th block
7: return Ū

(n)

8: end procedure

The memory for both “large” matrices (S and U(n)) is
temporary and can overlap the local portions.

VI. PARALLEL ALGORITHM ANALYSIS

A. ST-HOSVD

The initialization of the factor matrices in Alg. 2 is
computed using ST-HOSVD in Alg. 1. The latency cost
for ST-HOSVD is dominated by the TTMs, which is given
by α

∑N
n=1 Pn logPn. The remaining bandwidth and flop

contribution of TTM within ST-HOSVD is

1

P

N∑
n=1

(β(Pn − 1) + 2γIn)
∏
k≤n

Rk

∏
k>n

Ik

 .
The total contribution of Gram to the cost of ST-HOSVD
(aside from latency) is

1

P

N∑
n=1

[
(2γIn+2(Pn−1)β)

∏
k<n

Rk

∏
k≥n

Ik+2β(P̂n−1)I2n

]
The total contribution of calculating eigenvectors to the cost
of ST-HOSVD (aside from latency) is

N∑
n=1

[
β
Pn − 1

Pn
I2n + γ

10

3
I3n

]
.

The eigenvector cost is typically negligible compared to
TTM and Gram. Compared to TTM, Gram has a factor of 2
on the bandwidth cost as well as a subtle change in limits of
the product notation: the nth term in the Gram summation
is a factor of In/Rn larger than the nth term in the TTM
summation.

Note that the dominant expense in TTM and Gram de-
pends on the ordering of modes; each iteration reduces the
working data size. We can permute the modes in the main
iteration to optimize the total cost (both computation and
communication). We show some examples on the impact of
these rearrangements in Sec. VIII-C.

In terms of memory, we can reuse the local variables
from iteration to iteration and need not maintain temporaries.
Therefore, the maximum storage per processor for ST-
HOSVD is bounded above by

2I/P +

N∑
n=1

RnIn/Pn + max
n

I2n + max
n

RnIn. (2)



B. HOOI

The iterative improvement of the solution is computed
using HOOI in Alg. 2. We derive the cost per outer itera-
tion. The N inner iterations (computing each factor matrix
update) can be done in any order, and this order does
not affect the outer iteration cost. The latency cost of the
TTMs dominates the cost of HOOI and each iteration is
bounded above by αN

∑N
n=1 Pn logPn. The bandwidth and

computation cost from all N(N−1) TTMs within one outer
iteration of HOOI (ignoring the final TTM) is

N − 1

P

N∑
n=1

(β(Pn − 1) + 2γIn)
∏
k≤n

Rk

∏
k>n

Ik.

The total contribution of Gram (aside from latency) to the
cost of one outer iteration of HOOI is

1

P

N∑
n=1

(2β(Pn − 1) + 2γIn)InR̂n + 2βI2n(P̂n − 1).

The total contribution of the eigenvector calculations (aside
from latency) to the cost of one outer iteration of HOOI is

N∑
n=1

(
β
Pn − 1

Pn
In + γ

10

3
I3n

)
.

This cost is typically dominated by the multiple-TTM
computations in line 5, particularly so by the first TTM
performed in each mode. As in ST-HOSVD, the multiple-
TTM computations can be performed in any order, which
can greatly affect run time. In fact, each of the N multiple-
TTM computations can be ordered independently. We do not
tune over these possibilities in this work.

The maximum memory is bounded above in the same way
as for ST-HOSVD; see eq. (2).

VII. APPLICATION TO DIRECT NUMERICAL
SIMULATION DATA IN COMBUSTION SCIENCE

We demonstrate the utility of Tucker compression for two
scientific data sets obtained by direct numerical simulation
(DNS). A single simulation today can easily produce 100-
1000 GB of data, and much more is expected in the future.
Some attempts at compression using PCA and other methods
have been made; see, e.g., [22]. Current data sizes are an
obstacle for visualization and analysis because the data is
difficult to transfer and requires high-end workstations or
parallel clusters for computation. The goal of compression
is to enable easier sharing of data and to facilitate analysis
on reconstructed portions of the data. For instance, without
reconstructing the entire data set, we can extract only the
reconstruction of a single species, a few time steps, a coarser
grid, a subset of the grid, or any combination of these. This
enables the same data analysis to be performed on laptops.

A. Data Description

The DNS code used to produce this data is called S3D, a
massively parallel compressible reacting flow solver devel-
oped at Sandia National Laboratories [5]. We work with the
following multiway data sets:

• HCCI-t: This 4-way data tensor is of size 672×672×
33×t, requiring 71.6 GB storage for t = 628. It comes
from the simulation of an autoignitive premixture of
air and ethanol in Homogeneous Charge Compression
Ignition (HCCI) mode [2]. The first two dimensions
correspond to the 2D spatial grid, the third to the
species, and the last to time.

• TJ-A-t: This 5-way data tensor is of size 300× 500×
240 × 35 × t, requiring 122 GB storage for t = 13. It
comes from a temporally-evolving planar slot jet flame
with DME (dimethyl ether) as the fuel [3]. The first
three dimensions correspond to the 3D spatial grid, the
fourth to the species, and the last to time. This data has
been significantly downsampled and so is less amenable
to compression than the HCCI dataset.

• TJ-B-t: This 5-way data tensor is of size 460× 700×
360 × 35 × t, requiring 512 GB storage for t = 16. It
is the same as TJ-A, but higher spatial resolution.

Each data set is centered and scaled for each species. We
compute the mean and standard deviation for each species
slice, and then we transform the data by subtracting the mean
and dividing the result by the standard deviation (unless it
is less than machine precision, in which case the division
in not performed). This normalizes the data so that we
can roughly assume that each entry comes from a standard
normal distribution.

B. Compression Rates

Let X be an N -way data tensor of size I1×· · ·× IN . Let
λ
(n)
i denote the ith eigenvalue of the Gram matrix X(n)X

T
(n)

for n = 1, . . . , N , corresponding to the square of the ith
singular value of X(n). Assume that the eigenvalues are in
decreasing order, i.e., λ(n)1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
In

. Let X̃

be the reconstruction per eq. (1) using the T-HOSVD with
reduced size R1× · · · ×RN . It is well known [6], [21] that
selecting Rn such that

In∑
i=Rn+1

λ
(n)
i ≤ ε2‖X‖2/N

for n = 1, . . . , N ensures that the T-HOSVD satisfies

‖X− X̃‖2 ≤
N∑

n=1

(
In∑

i=Rn+1

λ
(n)
i

)
≤ ε‖X‖. (3)

The normalized RMS error for HOOI initialized by ST-
HOSVD is bounded above by the T-HOSVD error [6], [21].
In practice, computing {Rn} given ε can be done within the
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Figure 6. Results on data sets from combustion science.

ST-HOSVD as specified in Alg. 1 (the T-HOSVD need not
be computed).

Fig. 6a shows the normalized mode-wise RMS, i.e.,(∑In
i=Rn+1 λ

(n)
i

)1/2
/‖X‖ for each mode and value of Rn

of HCCI-628. The rate of drop-off in the errors determines
the compressibility of the data.

We show compression rates for all data sets in Fig. 6b,
where the compression ratio is

C =

N∏
k=1

In

/(
N∏

k=1

Rn +

N∑
k=1

InRn

)
.

The TJ-A-13 data set is the least compressible data set with
C ranging from 2 at ε = 10−6 to 1200 for ε = 10−2. The
HCCI-628 is much more compressible, with C ranging from
30 to 400000 for the same error range.

C. Reconstruction Error

Tab. II presents detailed compression results using ε =
10−5 to determine the compression ratios. We include the
maximum absolute element error of the centered and scaled
data. The HOOI iterations make little improvements on
the ST-HOSVD initialization, so simply performing ST-
HOSVD (with no HOOI iterations) is likely sufficient for
this particular application area.

Table II
COMPRESSION AND MAXIMUM ABSOLUTE ELEMENTWISE ERROR FOR

NORMALIZED RMS ERROR OF 1E-5.

Max. Comp.Dataset Reduced Size Elem. RatioError
HCCI-1 (16, 16, 4, 1) 3.6e-5 573
HCCI-20 (20, 18, 6, 5) 2.0e-4 7083
HCCI-628 (192, 183, 16, 104) 1.2e-3 139
TJ-A-1 (257, 139, 186, 20, 1) 1.7e-3 9
TJ-A-13 (300, 209, 240, 25, 13) 3.2e-3 3

VIII. PERFORMANCE RESULTS

A. Experimental Platform

We run all experiments on Edison, a Cray XC30 super-
computer located at NERSC consisting of 5,576 dual-socket
12-core Intel “Ivy Bridge” (2.4 GHz) compute nodes. The
peak flop rate of each core is 19.2 GFLOPS. Each node
has 64 GB of memory. The nodes are connected by a Cray
“Aries” interconnect with a dragonfly topology. We use Cray
compilers and LibSci for BLAS and LAPACK subroutines.

B. Parameter Choice: Processor Grid Configuration

Our first microbenchmark demonstrates the effect of the
processor grid on performance of the ST-HOSVD algo-
rithm. Fig. 7a presents relative running times for a fixed
problem size and number of processors, varying only the
processor grid. We break down the running time across
the three subroutines—Gram, Evecs, and TTM—which are
each performed once in each mode. Thus, each bar has four
blocks of each color, ordered from bottom to top so that the
first subroutine computation corresponds to the bottommost
block of that color. The dimensions are all equal to ensure
the ordering of the modes does not impact the performance.

As shown in Sec. VI-A, the processor grid does not
change the number of flops for each step in ST-HOSVD, but
it does effect the performance of sequential linear algebra
kernels due to its impact on the dimensions and layouts of
the local matrices involved in the computations.

For most processor grids, the initial iteration consumes at
least half of the overall running time. Gram dominates this
initial iteration. As shown in the analysis of Sec. VI-A, the
first Gram is more expensive than the first TTM by a factor
of at least I1/R1 = 4 (in terms of both computation and
communication). The cost of the Eigenvectors computation
is negligible. The best processor grids have P1 = 1, so
that communication is minimized in the first iteration. In
this case, the first Gram calculation only calls the all-
reduce, which is of size I21 , and the first TTM involves no
communication at all. We do not show results for processor
grids with P1 > 6, as they are more than 5 times the optimal
running time.

The best processor grid for ST-HOSVD is not necessarily
optimal for HOOI. While our limited tuning suggests that
good choices for ST-HOSVD tend to be reasonable for
HOOI and vice versa, an optimal overall processor grid
choice for Alg. 2 depends on the number of iterations of
HOOI.

C. Parameter Choice: Mode Ordering

Our second microbenchmark demonstrates the effect of
the mode ordering on performance of the ST-HOSVD al-
gorithm. In Fig. 7b, we show relative run times for a fixed
problem size and processor grid, varying only the order of
modes in line 3 of Alg. 1. As in Fig. 7a, we break down
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the run times across the three subroutines so that each bar
comprises a block of each subroutine color for each mode.

For this problem, we use synthetic data. The full tensor
dimensions are 25×250×250×250 which is formed from a
tucker decomposition with core dimensions 10×10×100×
100. We use a processor grid of dimensions 2×2×2×2. We
vary both the tensor dimensions and the ratios of tensor to
core dimensions to accentuate the effects of mode ordering.
We use only 16 of 24 cores on one node in order to obtain
a uniform processor grid and eliminate variability based on
processor grid choice.

Most of the overall performance is determined by the
choice of the first dimension, which is the smallest by a
factor of 10. Starting with the first dimension means a
cheaper first Gram but less reduction in computation and
communication in subsequent iterations. Starting with the
second dimension, which has the largest compression ratio,
yields the greatest savings in subsequent iterations but incurs
more overhead in the first iteration. Nevertheless, the optimal
ordering starts with the second dimension. While the first
Gram computation is more expensive than starting with
the first dimension, the reduction in time for subsequent
operations more than compensates.

We note that the authors of ST-HOSVD propose a heuris-
tic ordering (in the case of sequential computation) that
greedily chooses the mode that minimizes the number of
flops in the current iteration [21]. While that heuristic is not
optimal in this case, we see no simple alternative scheme
that is always optimal. Another reasonable heuristic is to
greedily choose the mode that maximizes the compression
ratio In/Rn.

D. Strong Scaling

To test the parallel scaling of our algorithm, we fix a
particular problem and increase the number of processors we
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Figure 8. Scaling performance of ST-HOSVD and one iteration of HOOI.

use to compute the Tucker decomposition. Fig. 8a reports
the running time of ST-HOSVD and one iteration of HOOI
across 24 · 2k processors, for 0 ≤ k ≤ 9.

For the experiment, we use the TJ-A-1 data set, which is a
4-way tensor representing one time step of a 3D combustion
simulation (the fourth mode corresponds to species) with
dimensions 500× 300× 240× 35 We compress it to a core
tensor of dimension 42 × 115 × 81 × 10 (yielding error of
10−3 and a compression ratio of 284). For each k, we tune
the processor grid over three or four possibilities (chosen
heuristically) for each algorithm and report the minimum
running time.

On one node, the data set requires about 1/7th of the
available memory. ST-HOSVD and one step of HOOI runs
in about 6 seconds, achieving 83% and 40% of peak perfor-
mance, respectively. On 512 nodes, the same computation
requires 0.36 seconds, achieving aggregate performance of
4.7 and 4.2 TFLOPS, respectively. At this scale, the local
tensor data is about 750 KB per core. We note that we
continue to decrease running time even at high concurrency,
though we are far from peak performance, as the interpro-
cessor communication and small matrix dimensions within
local computation kernels both degrade performance.

E. Weak Scaling

Fig. 8b shows a weak scaling experiment, reporting per-
formance per core for both ST-HOSVD and one iteration of
HOOI. In this experiment, we fix the amount of data per
processor and increase the number of processors and tensor
dimensions simultaneously.

We use 24 ·k4 processors and set the tensor dimensions to
be (200k)4 with cores of dimension (20k)4, for 1 ≤ k ≤ 6.
The plot reports the best performance for each algorithm
over three different processor grids: 1× 1× 4k2× 6k2, k×



k × 4k × 6k, and k × 2k × 3k × 4k. The size of the data
sets ranges from about 12 GB for k = 1 up to 15 TB for
k = 6. On one node (k = 1), ST-HOSVD and HOOI achieve
66% and 43% of peak performance, respectively. For 1296
nodes (k = 6), the algorithms achieves 17% and 12% of
peak, respectively, or up to 104 TFLOPS in aggregate. The
time required to process the 15 TB data set (performing
ST-HOSVD and HOOI on data in memory) is 70 seconds.

The main reason that we see degradation in performance
as we scale up to high processor counts is that it becomes
harder to navigate the tradeoffs among optimization of the
processor grid for the computations in different modes.

IX. CONCLUSION

Our parallel Tucker decomposition enables compression
of massive data sets that do not fit into memory on a single
machine. We show that these data sets can be processed in
reasonable time and yield excellent compression rates. The
implementation performs well (near peak performance) at
low core counts, and it scales (offers reduced run times)
up to high core counts. In order to achieve even better
parallel scaling, we see several avenues for performance im-
provement such as using multi-threaded BLAS for all local
computations or adapting recent work in optimizing multi-
threaded TTM computations [15]. Additionally, we can
overlap communication and computation and fully exploit
the symmetry in the Gram computation. For achieving ap-
proximation errors near the square root of machine precision
(or smaller), we need to consider a numerical improvement
to our algorithm, directly computing the singular values.
Improving the numerical stability of our algorithm will not
drastically hurt our overall performance; because YT

(n) is
typically very tall and skinny, we can compute the SVD
using a QR decomposition as a preprocessing step at roughly
twice the cost of our current approach.
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